Нахождение определенного интеграла методом симпсона. Старт в науке
Если вы искали на данной страничке только метод Симпсона, то настоятельно рекомендую сначала прочитать начало урока и просмотреть хотя бы первый пример. По той причине, что многие идеи и технические приемы будут схожими с методом трапеций.
И снова, начнём с общей формулы
Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на чётное
количество равных
отрезков. Чётное количество отрезков обозначают через .
На практике отрезков может быть:
два
:
четыре
:
восемь
:
десять
:
двадцать
:
Другие варианты не припоминаю.
Внимание! Число понимается как ЕДИНОЕ ЧИСЛО. То есть, НЕЛЬЗЯ сокращать, например, на два, получая . Запись лишь обозначает , что количество отрезков чётно . И ни о каких сокращениях речи не идёт
Итак, наше разбиение имеет следующий вид:
Термины аналогичны терминам метода трапеций:
Точки называют узлами
.
Формула Симпсона
для приближенного вычисления определенного интеграла имеет следующий вид:
где:
– длина каждого из маленьких отрезков или шаг
;
– значения подынтегральной функции в точках .
Детализируя это нагромождение, разберу формулу подробнее:
– сумма первого и последнего значения подынтегральной функции;
– сумма членов с чётными
индексами умножается на 2;
– сумма членов с нечётными
индексами умножается на 4.
Пример 4
Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,001. Разбиение начать с двух отрезков
Интеграл, кстати, опять неберущийся.
Решение: Сразу обращаю внимание на тип задания – необходимо вычислить определенный интеграл с определенной точностью . Что это значит, уже комментировалось в начале статьи, а также на конкретных примерах предыдущего параграфа. Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков (значение «эн») чтобы гарантированно достичь требуемой точности. Правда, придётся находить четвертую производную и решать экстремальную задачу. Кто понял, о чём я, и оценил объем работы, тот улыбнулся. Однако здесь не до смеха, находить четвертую производную от такой подынтегральной функции будет уже не мегаботан, а клинический психопат. Поэтому на практике практически всегда используется упрощенный метод оценки погрешности.
Начинаем решать. Если у нас два отрезка разбиения , то узлов будет на один больше
: . И формула Симпсона принимает весьма компактный вид:
Вычислим шаг разбиения:
Заполним расчетную таблицу:
Еще раз комментирую, как заполняется таблица:
В верхнюю строку записываем «счётчик» индексов
Во второй строке сначала пишем нижний предел интегрирования , а затем последовательно приплюсовываем шаг .
В третью строку заносим значения подынтегральной функции. Например, если , то . Сколько оставлять знаков после запятой? Действительно, в условии опять об этом ничего не сказано. Принцип тот же, что и в методе трапеций, смотрим на требуемую точность: 0,001. И прибавляем дополнительно 2-3 разряда. То есть, округлять нужно до 5-6 знаков после запятой.
В результате:
Первичный результат получен. Теперь удваиваем
количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:
Вычислим шаг разбиения:
Заполним расчетную таблицу:
Таким образом:
Оцениваем погрешность:
Погрешность больше требуемой точности: , поэтому необходимо еще раз удвоить количество отрезков: .
Формула Симпсона растёт, как на дрожжах:
Вычислим шаг:
И снова заполним расчетную таблицу:
Таким образом:
Заметьте, что здесь вычисления желательно уже расписать более подробно, поскольку формула Симпсона достаточно громоздка, и если сразу бУхнуть:
, то выглядеть сиё бухло будет как халтура. А при более детальной записи у преподавателя сложится благостное впечатление, что вы добросовестно стирали клавиши микрокалькулятора в течение доброго часа. Детальные вычисления для «тяжелых» случаев присутствуют в моём калькуляторе.
Оцениваем погрешность:
Погрешность меньше требуемой точности: . Осталось взять наиболее точное приближение , округлить его до трёх знаков после запятой и записать:
Ответ:
с точностью до 0,001
Пример 5
Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,0001. Разбиение начать с двух отрезков
Это пример для самостоятельного решения. Примерный образец чистового «короткого» оформления решения и ответ в конце урока.
В заключительной части урока рассмотрим еще пару распространенных примеров
Пример 6
Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Точность вычислений 0,001.
Этот интеграл берётся, правда, новичку взломать его не так-то просто, соответствующий метод решения рассмотрен в примере 5 урока Сложные интегралы . В задачах на приближенное вычисление интеграл не обязан быть непременно неберущимся! Любознательные студенты могут вычислить его точно и оценить погрешность относительно приближенного значения.
Решение: Обратите внимание на формулировку задания: «Точность вычислений 0,001». Смысловой нюанс данной формулировки предполагает, что результаты нужно только округлить до третьего знака после запятой, а не достигнуть такой точности. Таким образом, когда вам предлагается для решения задача на метод трапеций, метод Симпсона, всегдавнимательно вникайте в условие ! Спешка, как известно, нужна при охоте на блох.
Используем формулу Симпсона:
При десяти отрезках разбиения шаг составляет
Заполним расчетную таблицу:
Таблицу рациональнее сделать двухэтажной, чтобы не пришлось «мельчить» и всё разборчиво вместилось на тетрадный лист.
Вычисления, не ленимся, расписываем подробнее:
Ответ:
И еще раз подчеркну, что о точности здесь речи не идет. На самом деле, ответ может быть не , а, условно говоря, . В этой связи в ответе не нужно машинально приписывать «дежурную» концовку: «с точностью до 0,001»
Пример 7
Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Все вычисления проводить с точностью до третьего десятичного знака.
Примерная версия чистового оформления и ответ в конце урока, который подошел к концу.
Для приближенного вычисления определенного интеграл применяются и другие методы. В частности, теория степенных рядов со стандартной задачей Приближенное вычисление определенного интеграла путём разложения подынтегральной функции в ряд . Но это уже материал второго курса.
А сейчас настала пора раскрыть страшную тайну интегрального исчисления. Я создал уже больше десятка уроков по интегралам, и это, так скажем, теория и классика темы. На практике же, в частности, при инженерных расчетах – приблизить объекты реального мира стандартными математическими функциями практически невозможно. Невозможно идеально точно рассчитать, площадь, объем, плотность, к примеру, асфальтового покрытия.Погрешность , пусть с десятого, пусть с сотого знака после запятой – но она всё равно будет . Именно поэтому по приближенным методам вычисления написаны сотни увесистых кирпичей и создано серьёзное программное обеспечение для приближенных вычислений. Классическая же теория интегрального исчисления в действительности применяется заметно реже. Но, кстати, без неё – тоже никуда!
Данный урок не рекорден по объему, но на его создание у меня ушло необычно много времени. Я правил материал и переделывал структуру статьи несколько раз, поскольку постоянно прорисовывались новые нюансы и тонкости. Надеюсь, труды были не напрасны, и получилось вполне логично и доступно.
Всего вам доброго!
Решения и ответы:
Пример 3:
Решение:
Разбиваем отрезок интегрирования на 4 части:
Тогда формула трапеций принимает следующий вид:
Вычислим шаг:
Заполним расчетную таблицу:
При вычислении определенного интеграла не всегда получаем точное решение. Не всегда удается представление в виде элементарной функции. Формула Ньютона-Лейбница не подходит для вычисления, поэтому необходимо использовать методы численного интегрирования. Такой метод позволяет получать данные с высокой точностью. Метод Симпсона является таковым.
Для этого необходимо дать графическое представление выведению формулы. Далее идет запись оценки абсолютной погрешности при помощи метода Симпсона. В заключении произведем сравнение трех методов: Симпсона, прямоугольников, трапеций.
Метод парабол – суть, формула, оценка, погрешности, иллюстрации
Задана функция вида y = f (x) , имеющая непрерывность на интервале [ a ; b ] , необходимо произвести вычисление определенного интеграла ∫ a b f (x) d x
Необходимо разбить отрезок [ a ; b ] на n отрезков вида x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n с длиной 2 h = b - a n и точками a = x 0 < x 2 < x 4 < . . . < x 2 π - 2 < x 2 π = b . Тогда точки x 2 i - 1 , i = 1 , 2 , . . . , n считаются серединами отрезков x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n . Данный случай показывает, что определение узлов производится через x i = a + i · h , i = 0 , 1 , . . . , 2 n .
Каждый интервал x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n подынтегральной функции приближен при помощи параболы, заданной y = a i x 2 + b i x + c i , проходящей через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) . Поэтому метод и имеет такое название.
Данные действия выполняются для того, чтобы интеграл ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x взять в качестве приближенного значения ∫ x 2 i - 2 x 2 i f (x) d x . Можем вычислить при помощи формулы Ньютона-Лейбница. Это и есть суть метода парабол.Рассмотрим рисунок, приведенный ниже.
Графическая иллюстрация метода парабол (Симпсона)
При помощи красной линии изображается график функции y = f (x) , синей – приближение графика y = f (x) при помощи квадратичных парабол.
Исходя из пятого свойства определенного интеграла получаем ∫ a b f (x) d x = ∑ i = 1 n ∫ x 2 i - 2 x 2 i f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x
Для того чтобы получить формулу методом парабол, необходимо произвести вычисление:
∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x
Пусть x 2 i - 2 = 0 . Рассмотрим рисунок, приведенный ниже.
Изобразим, что через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить одна квадратичная парабола вида y = a i x 2 + b i x + c i . Иначе говоря, необходимо доказать, что коэффициенты могут определяться только единственным способом.
Имеем, что x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) являются точками параболы, тогда каждое из представленных уравнений является справедливым. Получаем, что
a i (x 2 i - 2) 2 + b i · x 2 i - 2 + c i = f (x 2 i - 2) a i (x 2 i - 1) 2 + b i · x 2 i - 1 + c i = f (x 2 i - 1) a i (x 2 i) 2 + b i · x 2 i + c i = f (x 2 i)
Полученная система разрешается относительно a i , b i , c i , где необходимо искать определитель матрицы по Вандермонду. Получаем, что
(x 2 i - 2) 2 x 2 i - 2 1 x 2 i - 1) 2 x 2 i - 1 1 (x 2 i) 2 x 2 i 1 , причем он считается отличным от нуля и не совпадает с точками x 2 i - 2 , x 2 i - 1 , x 2 i . Это признак того, что уравнение имеет только одно решение, тогда и выбранные коэффициенты a i ; b i ; c i могут определяться только единственным образом, тогда через точки x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить только одна парабола.
Можно переходить к нахождению интеграла ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x .
Видно, что
f (x 2 i - 2) = f (0) = a i · 0 2 + b i · 0 + c i = c i f (x 2 i - 1) = f (h) = a i · h 2 + b i · h + c i f (x 2 i) = f (0) = 4 a i · h 2 + 2 b i · h + c i
Для осуществления последнего перехода необходимо использовать неравенство вида
∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x = ∫ 0 2 h (a i x 2 + b i x + c i) d x = = a i x 3 3 + b i x 2 2 + c i x 0 2 h = 8 a i h 3 3 + 2 b i h 2 + 2 c i h = = h 3 8 a i h 2 + 6 b i h + 6 c i = h 3 f x 2 i - 2 + 4 f 2 2 i - 1 + f x 2 i
Значит, получаем формулу, используя метод парабол:
∫ a b f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x = = ∑ i = 1 n h 3 (f (x 2 i - 2) + 4 f (x 2 i - 1) + f (x 2 i)) = = h 3 f (x 0) + 4 f (x 1) + f (x 2) + f (x 2) + 4 f (x 3) + f (x 4) + . . . + + f (x 2 n - 2) + 4 f (x 2 n - 1) + f (x 2 n) = = h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)
Определение 1
Формула метода Симпсона имеет вид ∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) .
Формула оценки абсолютной погрешности имеет вид δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 .
Примеры приближенного вычисления определенных интегралов методом парабол
Метод Симпсона предполагает приближенное вычисление определенных интегралов. Чаще всего имеются два типа задач, для которых применим данный метод:
- при приближенном вычислении определенного интеграла;
- при нахождении приближенного значения с точностью δ n .
На точность вычисления влияет значение n , чем выше n , тем точнее промежуточные значения.
Пример 1
Вычислить определенный интеграл ∫ 0 5 x d x x 4 + 4 при помощи метода Симпсона, разбивая отрезок интегрирования на 5 частей.
Решение
По условию известно, что a = 0 ; b = 5 ; n = 5 , f (x) = x x 4 + 4 .
Тогда запишем формулу Симпсона в виде
∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)
Чтобы применить ее в полной мере, необходимо рассчитать шаг по формуле h = b - a 2 n , определить точки x i = a + i · h , i = 0 , 1 , . . . , 2 n и найти значения подынтегральной функции f (x i) , i = 0 , 1 , . . . , 2 n .
Промежуточные вычисления необходимо округлять до 5 знаков. Подставим значения и получим
h = b - a 2 n = 5 - 0 2 · 5 = 0 . 5
Найдем значение функции в точках
i = 0: x i = x 0 = a + i · h = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 0 0 4 + 4 = 0 i = 1: x i = x 1 = a + i · h = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 0 . 5 0 . 5 4 + 4 ≈ 0 . 12308 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 5 5 4 + 4 ≈ 0 . 00795
Наглядность и удобство оформляется в таблице, приведенной ниже
i | 0 | 1 | 2 | 3 | 4 | 5 |
x i | 0 | 0 . 5 | 1 | 1 . 5 | 2 | 2 . 5 |
f x i | 0 | 0 . 12308 | 0 . 2 | 0 . 16552 | 0 . 1 | 0 . 05806 |
i | 6 | 7 | 8 | 9 | 10 |
x i | 3 | 3 . 5 | 4 | 4 . 5 | 5 |
f x i | 0 . 03529 | 0 . 02272 | 0 . 01538 | 0 . 01087 | 0 . 00795 |
Необходимо подставить результаты в формулу метода парабол:
∫ 0 5 x d x x 4 + 4 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = 0 . 5 3 0 + 4 · 0 . 12308 + 0 . 16552 + 0 . 05806 + + 0 . 02272 + 0 . 01087 + 2 · 0 . 2 + 0 . 1 + + 0 . 03529 + 0 . 01538 + 0 . 00795 ≈ ≈ 0 . 37171
Для вычисления мы выбрали определенный интеграл, который можно вычислить по Ньютону-Лейбницу. Получим:
∫ 0 5 x d x x 4 + 4 = 1 2 ∫ 0 5 d (x 2) x 2 2 + 4 = 1 4 a r c t g x 2 2 0 5 = 1 4 a r c t g 25 2 ≈ 0 . 37274
Ответ: Результаты совпадают до сотых.
Пример 2
Вычислить неопределенный интеграл ∫ 0 π sin 3 x 2 + 1 2 d x при помощи метода Симпсона с точностью до 0 , 001 .
Решение
По условию имеем, что а = 0 , b = π , f (x) = sin 3 x 2 + 1 2 , δ n ≤ 0 . 001 . Необходимо определить значение n . Для этого используется формула оценки абсолютной погрешности метода Симпсона вида δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001
Когда найдем значение n , то неравенство m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001 будет выполняться. Тогда, применив метод парабол, погрешность при вычислении не превысит 0 . 001 . Последнее неравенство примет вид
n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88
Теперь необходимо выяснить, какое наибольшее значение может принимать модуль четвертой производной.
f " (x) = sin 3 x 2 + 1 2 " = 3 2 cos 3 x 2 ⇒ f "" (x) = 3 2 cos 3 x 2 " = - 9 4 sin 3 x 2 ⇒ f " " " (x) = - 9 4 sin 3 x 2 " = - 27 8 cos 3 x 2 ⇒ f (4) (x) = - 27 8 cos 3 x 2 " = 81 16 sin 3 x 2
Область определения f (4) (x) = 81 16 sin 3 x 2 принадлежит интервалу - 81 16 ; 81 16 , а сам отрезок интегрирования [ 0 ; π) имеет точку экстремума, из этого следует, что m a x [ 0 ; π ] f (4) (x) = 81 16 .
Производим подстановку:
n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88 ⇔ n 4 ≥ 81 16 · π - 0 5 2 . 88 ⇔ ⇔ n 4 > 537 . 9252 ⇔ n > 4 . 8159
Получили, что n – натуральное число, тогда его значение может быть равным n = 5 , 6 , 7 … для начала необходимо взять значение n = 5 .
Действия производить аналогично предыдущему примеру. Необходимо вычислить шаг. Для этого
h = b - a 2 n = π - 0 2 · 5 = π 10
Найдем узлы x i = a + i · h , i = 0 , 1 , . . . , 2 n , тогда значение подынтегральной функции будет иметь вид
i = 0: x i = x 0 = a + i · h = 0 + 0 · π 10 = 0 ⇒ f (x 0) = f (0) = sin 3 · 0 2 + 1 2 = 0 . 5 i = 1: x i = x 1 = a + i · h = 0 + 1 · π 10 = π 10 ⇒ f (x 1) = f (π 10) = sin 3 · π 10 2 + 1 2 ≈ 0 . 953990 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · π 10 = π ⇒ f (x 10) = f (π) = sin 3 · π 2 + 1 2 ≈ - 0 . 5 7 π 10
Осталось подставить значения в формулу решения методом парабол и получим
∫ 0 π sin 3 x 2 + 1 2 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = π 30 · 0 , 5 + 4 · 0 . 953990 + 1 . 487688 + 1 . 207107 + + 0 . 343566 - 0 . 391007 + 2 · 1 . 309017 + 1 . 451056 + + 0 . 809017 - 0 . 87785 - 0 . 5 = = 2 . 237650
Метод Симпсона позволяет нам получать приближенное значение определенного интеграла ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237 с точностью до 0 , 001 .
При вычислении формулой Ньютона-Лейбница получим в результате
∫ 0 π sin 3 x 2 + 1 2 d x = - 2 3 cos 3 x 2 + 1 2 x 0 π = = - 3 2 cos 3 π 2 + π 2 - - 2 3 cos 0 + 1 2 · 0 = π 2 + 2 3 ≈ 2 . 237463
Ответ: ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237
Замечание
В большинстве случаях нахождение m a x [ a ; b ] f (4) (x) проблематично. Поэтому применяется альтернатива – метод парабол. Его принцип подробно разъясняется в разделе метода трапеций. Метод парабол считается предпочтительным способом для разрешения интеграла. Вычислительная погрешность влияет на результат n . Чем меньше его значение, тем точнее приближенное искомое число.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Разобьем отрезок интегрирования [а , b ] на четное число n равных частей с шагом h . На каждом отрезке [х 0, х 2], [х 2, х 4],..., [x i-1, x i+1],..., [x n-2, x n] подынтегральную функцию f (х ) заменим интерполяционным многочленом второй степени:
Коэффициенты этих квадратных трехчленов можно найти из условий равенства многочлена в точках соответствующим табличным данным . В качестве можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки :
Сумму элементарных площадей и (рис. 3.3) можно вычислить с помощью определенного интеграла. Учитывая равенства получаем
-
Рис. 3.3. Иллюстрация к методу Симпсона
Проведя такие вычисления для каждого элементарного отрезка , просуммируем полученные выражения:
Данное выражение для S принимается в качестве значения определенного интеграла:
(3.35)
Полученное соотношение называется формулой Симпсона или формулой парабол .
Эту формулу можно получить и другими способами, например двукратным применением метода трапеций при разбиениях отрезка [а , b ] на части с шагами h и 2h или комбинированием формул прямоугольников и трапеций (см. разд. 3.2.6).
Иногда формулу Симпсона записывают с применением полуцелых индексов. В этом случае число отрезков разбиения п произвольно (не обязательно четно), и формула Симпсона имеет вид
(3.36)
Легко видеть, что формула (3.36) совпадет с (3.35), если формулу (3.35) применить для числа отрезков разбиения 2n и шага h /2.
Пример . Вычислить по методу Симпсона интеграл
Значения функции при n = 10, h = 0.1 приведены в табл. 3.3. Применяя формулу (3.35), находим
Результат численного интегрирования с использованием метода Симпсона оказался совпадающим с точным значением (шесть значащих цифр).
Один из возможных алгоритмов вычисления определенного интеграла по методу Симпсона показан на рис. 3.4. В качестве исходных данных задаются границы отрезка интегрирования [а , b ],погрешность ε, а также формула для вычисления значений подынтегральной функции у = f (x ) .
Рис. 3.4. Алгоритм метода Симпсона
Первоначально отрезок разбивается на две части с шагом h =(b - a)/2. Вычисляется значение интеграла I 1. Потом число шагов удваивается, вычисляется значение I 2 с шагом h /2. Условие окончание счета принимается в виде . Если это условие не выполнено, происходит новое деление шага пополам и т.д.
Отметим, что представленный на рис. 3.4 алгоритм не является оптимальным: при вычислении каждого приближения I 2 не используются значения функции f (x ), уже найденные на предыдущем этапе. Более экономичные алгоритмы будут рассмотрены в разд. 3.2.7.
Формула
Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :
где , и - значения функции в соответствующих точках (на концах отрезка и в его середине).
Погрешность
При условии, что у функции на отрезке существует четвёртая производная, погрешность , согласно найденной Джузеппе Пеано формуле равна:
В связи с тем, что значение зачастую неизвестно, для оценки погрешности используется следующее неравенство:
Представление в виде метода Рунге-Кутты
Формулу Симпсона можно представить в виде таблицы метода Рунге-Кутты следующим образом:
Составная формула (формула Котеса)
Для более точного вычисления интеграла, интервал разбивают на отрезков одинаковой длины и применяют формулу Симпсона на каждом из них. Значение исходного интеграла является суммой результатов интегрирования на всех отрезках.
где - величина шага, а - узлы интегрирования, границы элементарных отрезков, на которых применяется формула Симпсона. Обычно для равномерной сетки данную формулу записывают в других обозначениях (отрезок разбит на узлов) в видеТакже формулу можно записать используя только известные значения функции, то есть значения в узлах:
где означает что индекс меняется от единицы с шагом, равным двум. Следует обратить внимание на удвоение коэффициента перед суммой. Это связано с тем, что в данном случае роль промежуточных узлов играют исходные узлы интегрирования.Общая погрешность при интегрировании по отрезку с шагом (при этом, в частности, , ) определяется по формуле :
.При невозможности оценить погрешность с помощью максимума четвёртой производной (например, на заданном отрезке она не существует, либо стремится к бесконечности), можно использовать более грубую оценку:
.Примечания
Литература
- Костомаров Д. П., Фаворский А. П. «Вводные лекции по численным методам»
- Петров И. Б., Лобанов А. И. Лекции по вычислительной математике
Wikimedia Foundation . 2010 .
- Western Union
- Патагонский попугай
Смотреть что такое "Формула Симпсона" в других словарях:
СИМПСОНА ФОРМУЛА - (формула парабол) формула для приближенного вычисления определенных интегралов (квадратурная формула), Названа по имени Т. Симпсона (1743) … Большой Энциклопедический словарь
СИМПСОНА ФОРМУЛА - (формула парабол), формула для приближённого вычисления определ. интегралов (квадратурная формула), имеющая вид где А = (b а)/2n, fk = f(a + kh), k = 0, 1, 2, ..., 2n. Названа по имени Т. Симпсона (1743) …
Симпсона формула - формула для приближённого вычисления определённых интегралов, имеющая вид: , где h = (b а)/2n; fi, = f (a + ih), i = 0, 1, 2,..., 2n. С. ф. называют иногда формулой парабол, т. к. вывод этой формулы основан на… … Большая советская энциклопедия
Симпсона формула - формула парабол, формула для приближённого вычисления определённых интегралов (квадратурная формула), имеющая вид, где h = (b–a)/2n, fk = f(а + kh), k = 0, 1, 2, ..., 2n. Названа по имени Т. Симпсона (1743). * * * СИМПСОНА ФОРМУЛА СИМПСОНА… … Энциклопедический словарь
Формула прямоугольников
Формула трапеций - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия
СИМПСОНА ФОРМУЛА - частный случай Ньютона Котеса квадратурной формулы, в к рой берутся три узла: Пусть промежуток [а, b]разбит на пчастичных промежутков , i=0, 1, 2, ..., n 1, длины h=(b а)/п, при этом n считается четным числом, и для вычисления интеграла … Математическая энциклопедия
Симпсона формула - … Википедия
Метод Симпсона - Формула Симпсона относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710 1761). Рассмотрим отрезок . Пусть известны значения вещественной функции f(x) в точках a, (a+b)/2, b.… … Википедия
КВАДРАТУРНАЯ ФОРМУЛА - формула, служа щая для приближённого вычисления определ. интегралов по значениям подынтегральной функции в конечном числе точек. Примеры К. ф. прямоугольников формула, трапеций формула, Симпсона формула … Естествознание. Энциклопедический словарь


Назначение сервиса . Сервис предназначен для вычисления определенного интеграла по формуле Симпсона в онлайн режиме.
Инструкция . Введите подынтегральную функцию f(x) , нажмите Решить. Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .
Правила ввода функции
Примеры правильного написания F(x):1) 10 x e 2x ≡ 10*x*exp(2*x)
2) x e -x +cos(3x) ≡ x*exp(-x)+cos(3*x)
3) x 3 -x 2 +3 ≡ x^3-x^2+3
Вывод формулы Симпсона
Из формулы
при n = 2 получаем

Т.к. x 2 -x 0 = 2h, то имеем . (10)
Это формула Симпсона . Геометрически это означает, что кривую y=f(x) мы заменяем параболой y=L 2 (x), проходящей через три точки: M 0 (x 0 ,y 0), M 1 (x 1 ,y 1), M 2 (x 2 ,y 2).

Остаточный член формулы Симпсона равен

Предположим, что y∈C (4) . Получим явное выражение для R . Фиксируя среднюю точку x 1 и рассматривая R=R(h) как функцию h, будем иметь:
.
Отсюда дифференцируя последовательно три раза по h , получим



Окончательно имеем
,
где ξ 3 ∈(x 1 -h,x 1 +h). Кроме того, имеем: R(0) = 0, R"(0)=0. R""(0)=0. Теперь, последовательно интегрируя R"""(h), используя теорему о среднем, получим

Таким образом, остаточный член квадратурной формулы Симпсона равен
, где ξ∈(x 0 ,x 2). (11)
Следовательно, формула Симпсона является точной для полиномов не только второй, но и третьей степени.
Получим теперь формулу Симпсона для произвольного интервала [a ,b ]. Пусть n = 2m есть четное число узлов сетки {x i }, x i =a+i·h, i=0,...,n,


Отсюда получаем общую формулу Симпсона
.(12)
Ошибка для каждого удвоенного промежутка (k=1,...,m) дается формулой (11).

Т.к. число удвоенных промежутков равно m , то

С учетом непрерывности y IV на [a ,b ], можно найти точку ε, такую, что

Поэтому будем иметь
. (13)
Если задана предельно допустимая погрешность ε, то, обозначив


На практике вычисление R по формуле (13) бывает затруднительным. В этом случае можно поступить следующим образом. Вычисляем интеграл I(h)=I 1 с шагом h , I(2h)=I 2 с шагом 2h и т.д. и вычисляем погрешность Δ:
Δ = |I k -I k-1 | ≤ ε. (14)
Если неравенство (14) выполняется (ε - заданная погрешность), то за оценку интеграла берут I k = I(k·h).
Замечание. Если сетка неравномерная, то формула Симпсона приобретает следующий вид (получить самостоятельно)
.
Пусть число узлов n = 2m (четное). Тогда

Пример №1
. С помощью формулы Симпсона вычислить интеграл , приняв n
= 10.
Решение:
Имеем 2m
= 10. Отсюда . Результаты вычислений даны в таблице:
i | x i | y 2i-1 | y 2i |
0 | 0 | y 0 = 1.00000 | |
1 | 0.1 | 0.90909 | |
2 | 0.2 | 0.83333 | |
3 | 0.3 | 0.76923 | |
4 | 0.4 | 0.71429 | |
5 | 0.5 | 0.66667 | |
6 | 0.6 | 0.62500 | |
7 | 0.7 | 0.58824 | |
8 | 0.8 | 0.55556 | |
9 | 0.9 | 0.52632 | |
10 | 1.0 | y n =0.50000 | |
∑ | σ 1 | σ 2 |
По формуле (12) получим .
Рассчитаем погрешность R=R 2 . Т.к.

Отсюда max|y IV |=24 при 0≤x≤1 и, следовательно

Пример №2
. В задачах вычислить определенный интеграл приближенно по формуле Симпсона, разбив отрезок интегрирования на 10 равных частей. Вычисления производить с округлением до четвертого десятичного знака.